Five Species of the Genus Callogobius Found in Japan and Their Relationships

Prince Akihito and Katsusuke Meguro

(Received May 2, 1977)

Callogobius sclateri (Steindachner) is newly recorded from Japan; Callogobius moroanus (Seale) is synonymized with Callogobius hasseltii (Bleeker) and Callogobius snyderi (Fowler) is synonymized with Callogobius okinawae (Snyder), after comparison with the types. Therefore the species of Callogobius found in Japan are five species: C. snelliisi Koumans, C. sclateri, C. hasseltii, C. okinawae and C. tanegasimae (Snyder).

The diagnostic characters of the five species are given in Table 1.

The phylogeny of these species is considered from the occurrence of common characters among these five species, and from the degree of specialization of the characters. Specialization is estimated by comparison mostly with the characters of the most unspecialized species of the Gobiidae, which have a suborbital and a process on the inner side of the maxillary for attachment of the cheek muscle tendon, and with the characters of the unspecialized species, which have a process on the inner side of the maxillary but no suborbital (see page 115), and also with the characters of the species with the same degree of specialization in the loss of bones as Callogobius, which has five branchiostegal rays. The unspecialized characters among the diagnostic characters listed in Table 1 are thought to be: the body not elongated, 26 vertebrae, the lower jaw with teeth enlarged anteriorly in the outer row and posteriorly in the inner row, the tongue free from the floor of the mouth and the tip of the tongue not emarginate, and the tip of the glossohyal without membranous part, the pelvic fins with the unifying membrane not emarginate and with a frenum, the head covered by cycloid scales and the trunk covered by ctenoid scales, the presence of the anterior and posterior occlusoscapular canals and the preopercular canal, the presence of the pit organ line 20, and the presence of the lower postcleithrum. Taking these points into consideration, among the five species of Callogobius, C. snelliisi has the most unspecialized characters, and C. tanegasimae has the most specialized characters. Of the characters common to all three, or to at least two, of the following species, C. snelliisi, C. sclateri and C. hasseltii, none are considered to be specialized and are supposedly possessed by the ancestral form. Of the characters common to all three, or to at least two, of the following species, C. hasseltii, C. okinawae and C. tanegasimae, none are considered to be unspecialized; this indicates a close relationship among the three species. As shown in Fig. 9, C. snelliisi, C. sclateri and C. hasseltii diverged from a common ancestor; C. okinawae and C. tanegasimae diverged from the branch which issued C. hasseltii.

(The Crown Prince’s Palace, Minato-ku, Tokyo 107, Japan)
魚類学雑誌 Japan. J. Ichthyol. 24(2), 1977

（Snyder）の3種を記録している。更に Takagi (1957)はシュンカンハゼ Callogobius shunkan Takagi を記載した。その後の高木（未公刊）の日本産ハゼ魚類の研究では、ネマハゼ Callogobius liolepis Kounmans, オキナワハゼ Callogobius hasseltii (Bleeker), シュンカンハゼ Callogobius snelliouisi Kounmans, タネハゼ Callogobius tanegasimae (Snyder) の4種が扱われており、ここでは C. shunkan は C. snelliouisi のシノニムとされている。また蒲原（1964）は沖縄及び八重山群島の魚類名目中 Callogobius moroanus (Scate) と C. hasseltii (Bleeker) オキナワハゼを記録している。筆者らはネマハゼについて検討を行ない、本種が Callogobius okinawae に同定され、C. hasseltii（オキナワハゼ）とは区別されることをすでに報告した（明仁親王・目黒, 1975）。その後、各種の模式標本を調べた結果、松原（1955: 835）のシュンカンハゼ C. snyderi もネマハゼ C. okinawae に同定されること、また C. moroanus の完成熟標本は C. hasseltii に、更に、日本での1未記載種が Callogobius sclateri (Steindachner)（新称：フタスジハゼ）に同定されることを見出した。これらを含め、日本で採集されたオキナワハゼ属の5種、シュンカンハゼ、フタスジハゼ、オキナワハゼ、ネマハゼ、タネハゼを比較し、その親縁関係を考察した。

観察標本及び方法

使用した標本は、下記の通りである。標本番号、採集地、採集年月日、個体数（角型弧内）、及び標準体長（丸括弧内 mm）の順に示す。観察はアリザリン・レッドで染色されたものである。尾側の凹凸数は上側縫合+上分縫合+下分縫合の順に記す。脊椎骨数は X 線写真により、他の骨は、アリザリン・レッド染色によって調べた。

シュンカンハゼ Callogobius snelliouisi Kounmans

フタスジハゼ Callogobius sclateri (Steindachner)

オキナワハゼ Callogobius hasseltii (Bleeker)

明仁親王・目黒 (1975: 112) と同じ、その中の模式標本は MNHN (Musée National d'Histoire Naturelle, Paris) 2968, holotype of Gobius coelidotos; FMNH (Field Museum of Natural History, Chicago) 17373, holotype of Macgregorella badia がある。

ネマハゼ Callogobius okinawae (Snyder)

タネハゼ Callogobius tanegasimae (Snyder)

Fig. 1. Collection localities in Japan of five species of *Callozoebius*. h, *C. hasseltii* (Okinawahaze); o, *C. okinawae* (Namarahaze); sc, *C. sclateri* (Futasujihaze); s, *C. snelliusi* (Shunkanahaze); t, *C. tanegasimae* (Tanehaze).

日本で採取されたオキナワハゼ属5種の類縁関係を検討するために用いたオキナワハゼ属以外の主な種の標本

Table 1. Diagnostic characters of five species of Callogobius. The average values *, Variations are found among specimens. Details in text.

<table>
<thead>
<tr>
<th>Scientific name (Japanese name)</th>
<th>C. snelliusi (Shunkanhanaze)</th>
<th>C. sclareri (Futasujihaze)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length/standard length (%)</td>
<td>30.7 39.9 31.8(12)</td>
<td>30.3 35.7 32.2(11)</td>
</tr>
<tr>
<td>Teeth of lower jaw</td>
<td>teeth enlarged anteriorly in outer row</td>
<td>teeth enlarged anteriorly in outer row, posteriorly in inner row</td>
</tr>
<tr>
<td>Tongue</td>
<td>adenate to floor of mouth, tip emarginate</td>
<td>free from floor of mouth, tip not emarginate</td>
</tr>
<tr>
<td>Membranous part of tip of glossophyial (Fig. 3)</td>
<td>present*</td>
<td>absent</td>
</tr>
<tr>
<td>Length of stained part of glossophyial / width of stained part of glossophyial</td>
<td>1.1 1.2 1.2(2)</td>
<td>2.2(1)</td>
</tr>
<tr>
<td>Second dorsal fin rays</td>
<td>1.8 10 1.9 0(12)</td>
<td>1.9 10 1.9 2(11)</td>
</tr>
<tr>
<td>Anal fin rays</td>
<td>1,7 8; 1,7 1(12)</td>
<td>1,7 9; 1,7 5(11)</td>
</tr>
<tr>
<td>Caudal fin length/head length (%)</td>
<td>74.5 119.4 97.3(12)</td>
<td>70.3 98.8 87.6(11)</td>
</tr>
<tr>
<td>Pectoral fin</td>
<td>reaching origin of anal fin in both sexes</td>
<td>as in C. snelliusi</td>
</tr>
<tr>
<td>Length of membrane uniting pelvic fins from base of longest ray/length of longest ray (%)</td>
<td>margin entire</td>
<td>4.4 6.3 5.8(4)</td>
</tr>
<tr>
<td>Pelvic frenum</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Scales in a longitudinal series</td>
<td>26 34; 29.3(12)</td>
<td>29.9 31; 29.9(10)</td>
</tr>
<tr>
<td>Scales in a transverse series from second dorsal fin origin to anal fin</td>
<td>8 11; 9.6(12)</td>
<td>11 12; 11.4(10)</td>
</tr>
<tr>
<td>Scales on cheek and opercle</td>
<td>cycloid</td>
<td>cycloid</td>
</tr>
<tr>
<td>Scales on occiput</td>
<td>cycloid</td>
<td>cycloid</td>
</tr>
<tr>
<td>Scales on nape</td>
<td>cycloid</td>
<td>cycloid</td>
</tr>
<tr>
<td>Scales on trunk</td>
<td>ctenoid</td>
<td>ctenoid</td>
</tr>
<tr>
<td>Scales on caudal peduncle</td>
<td>ctenoid</td>
<td>ctenoid</td>
</tr>
<tr>
<td>Transverse bands under dorsal fins</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pattern of pectoral fin</td>
<td>each ray spotted</td>
<td>an oblique cross band</td>
</tr>
<tr>
<td>Anterior oculocapular canal (Fig. 5)</td>
<td>pores B', C (single), D (single), E, F, G and H'; single canal between C and D</td>
<td>as in C. snelliusi</td>
</tr>
<tr>
<td>Posterior oculocapular canal</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Preopercular canal</td>
<td>present</td>
<td>absent, but 3 single pit organs present</td>
</tr>
<tr>
<td>Pit organ lines 14 and 15 (Fig. 2)</td>
<td>continuous</td>
<td>continuous</td>
</tr>
<tr>
<td>Pit organ line 16 (Fig. 2)</td>
<td>3 short transverse lines*, with behind them a longitudinal line of pit organs not on dermal folds</td>
<td>11 short transverse lines</td>
</tr>
<tr>
<td>Pit organ line 20 (Fig. 2)</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Lower post-cleithrum</td>
<td>present, longer than width of lowest actinost (2)</td>
<td>absent (1)</td>
</tr>
<tr>
<td>Vertebræ including urostyle</td>
<td>26 26; 25.9(10)</td>
<td>26(8)</td>
</tr>
<tr>
<td>abdominal</td>
<td>10(10)</td>
<td>10(8)</td>
</tr>
<tr>
<td>caudal</td>
<td>15 16; 15.9(10)</td>
<td>16(8)</td>
</tr>
</tbody>
</table>
follow the range. Figures in parentheses indicate the number of specimens.

<table>
<thead>
<tr>
<th>C. hasseltii</th>
<th>C. okinawae (Namerahaze)</th>
<th>C. tanegasimae (Tanehaze)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6~30.3: 27.3(16)</td>
<td>24.1~36.2: 27.0(47)</td>
<td>19.9~26.5: 22.6(23)</td>
</tr>
<tr>
<td>as in C. snelliusi</td>
<td>as in C. snelliusi</td>
<td>as in C. snelliusi</td>
</tr>
<tr>
<td>as in C. sclateri</td>
<td>as in C. sclateri</td>
<td>as in C. sclateri</td>
</tr>
<tr>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>1.8(1)</td>
<td>1.7~2.3: 2.0(7)</td>
<td>1.8~2.4: 2.2(10)</td>
</tr>
<tr>
<td>I, 7~8: I, 7.8(16)</td>
<td>I, 7~9: I, 8.0(47)</td>
<td>I, 10~13: I, 11.8(23)</td>
</tr>
<tr>
<td>86.1~161.4: 138.1(14)</td>
<td>66.7~176.3: 110.9(47)</td>
<td>109.8~231.3: 171.5(22)</td>
</tr>
<tr>
<td>as in C. snelliusi</td>
<td>not reaching origin of anal fin in either sex</td>
<td>reaching origin of anal fin in some males*, not reaching it in females</td>
</tr>
<tr>
<td>37.1~60.9: 49.0(2)</td>
<td>70.0~88.9: 82.0(4)</td>
<td>margin entire</td>
</tr>
<tr>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>40~48: 43.8(16)</td>
<td>42~49: 45.7(42)</td>
<td>60~70: 65.4(23)</td>
</tr>
<tr>
<td>16~20: 18.3(16)</td>
<td>16~21: 19.2(42)</td>
<td>15~19: 16.8(23)</td>
</tr>
<tr>
<td>cycloid</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>cycloid</td>
<td>absent anteriorly, cycloid posteriorly</td>
<td>absent</td>
</tr>
<tr>
<td>cycloid</td>
<td>cycloid</td>
<td>absent</td>
</tr>
<tr>
<td>ctenoid</td>
<td>cycloid</td>
<td>cycloid</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>a band from upper base to tip</td>
<td>a blotch on upper part of base pores B', C (single), D (single), E, F, G and H*, double canals, connected at both ends, between C and D*</td>
<td>as in C. hasseltii</td>
</tr>
<tr>
<td>as in C. snelliusi</td>
<td>pores B', D (single), F, G and H* without C and E*, canals of both sides connected before D</td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>absent</td>
<td>absent, but 2 single pit organs present</td>
</tr>
<tr>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>continuous</td>
<td>discontinuous*</td>
<td>continuous</td>
</tr>
<tr>
<td>12 short transverse lines</td>
<td>as in C. hasseltii</td>
<td>as in C. hasseltii</td>
</tr>
<tr>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>absent (1)</td>
<td>absent (10)</td>
<td>present, shorter than width of lowest actinost (10)</td>
</tr>
<tr>
<td>10~11: 10.2(5)</td>
<td>10~11: 10.1(35)</td>
<td>11~12: 11.5(19)</td>
</tr>
<tr>
<td>15~16: 15.8(5)</td>
<td>16~17: 16.1(35)</td>
<td>17~19: 18.0(19)</td>
</tr>
</tbody>
</table>
Fig. 2. Sensory canal pores and pit organs of five species of *Callogobius*. □, pit organs on a dermal fold; ▲, a single pit organ; •••••, pit organs not on dermal fold. B′~H′, pores of anterior oculoscapular canal; K′~L′, pores of posterior oculoscapular canal; M′~O′, pores of preopercular canal; ′, pore at tip of canal; 1~22, pit organ lines.

Callogobius Bleeker オキナワハゼ属

Callogobius Bleeker, 1874: 318 (模式種 *Eleotris Hasseltii* Bleeker).

Doryptena Snyder, 1908: 102 (模式種 *Doryptena okinawae* Snyder).

記載 頭部は前鱗蓋部の位置で縦並ぶ。両眼間隔は眼径より狭い。前後両鼻孔とも筒状に突出し、前鼻孔の方が長く、前鼻孔は鼻孔と上唇上縁に達する。後鼻孔の後縁は、後鼻孔の開孔の直径より長く、下顎は上顎より突出する。上顎骨の後端は眼の前端の位置を越えない。鰭孔下端は顕鼻の前端より後方にある。両顎の歯は数列で1尖頭。外側の1列の歯は大きい。但しフタスジハゼの下顎の後部では外側の歯は小さい。シュンカンハゼを除き、舌は口閉口から遊離し、舌端にくほみがない。シュンカンハゼを除き、舌骨骨端には膜状部がない。鰭端は棒状で先端が短く、表面は平滑である。第1背鰭6棘、腹鰭1棘5軟条で端合膜の鰭の内入の程度は種によって差がある。フタスジハゼを除き膜蓋が存在する。頭部は円錐または無鰭、軸幹部と尾柄部は細鰭または円
鱗である。前眼脛管は存在するが、後眼脛管と前鋸管は存在しないものがある。シュンカンハゼの1部の孔器列を除き、頭部の各々の孔器列は1列で孔器は皮褶上に開孔する。その他に隆起した単一孔器がある。体側の孔器列は皮褶を有しない。眼下骨、上顎顎骨、上顎顎骨突起、上顎顎骨突起は、鰓条骨数5。脛甲骨は脛甲骨孔は不完全に直視観。下頬孔は孔の上で欠刻する。下後顎骨は生じるものとないものがある。脊椎骨数25～30。
第1脊椎の第1と第2軸棘骨は第3と第4脊椎骨の神経棘の間に、第3と第4軸棘骨は第4と第5脊椎骨の神経棘の間に、第5軸棘骨は第5と第6脊椎骨の神経棘の間に、第6軸棘骨は第6と第7脊椎骨の神経棘の間にある。第2脊椎の第1と第2軸棘骨は第9脊椎骨の神経棘にまたがっている。

以下日本で採集されたオキナワハゼ属5種の感覚管と孔器による検索表を示し、続いて各種の記載をする。各種の標本はTable1に、日本における採集地はFig.1に載せる。

感覚管と孔器によるオキナワハゼ属5種
の検索表(Fig.2)
1a. 後眼脛管（開孔K', L'間）がある。孔器列16
 は皮褶上に開孔する短横列孔器と皮褶のない1細列孔器
 からなる。シュンカンハゼC. snelliisi
1b. 後眼脛管がない、孔器列16は皮褶上に開孔する
 短横列孔器からなる。C. okinawae
2a. 前鋸管（開孔M', O'間）がある。C. hasseltii
2b. 前鋸管がない。C. sclateri
3a. 孔器列14と15は中断する。
 C. tanegasimae
3b. 孔器列14と15は中断しない。
4a. 前鋸管の位置に3個の単一孔器がある。孔器列16
 は11短横列、孔器列20がある。
 C. shunkan Takagi, 1957: 112, fig. 4, pl. 5 D, Kagoshima Prefecture, Japan.

シュンカンハゼ Callogobius snelliisi Koumans
Callogobius snelliisi Koumans, 1953: 102, Morotai, Indonesia.
Callogobius shunkan Takagi, 1957: 112, fig. 4, pl. 5 D, Kagoshima Prefecture, Japan.
体は胸鰭基底の位置で、やや側扁する。頭長は標準体長の 30.7～33.9%（平均 31.8%）で、側頭間隔は眼径の 30.8～52.6%（43.5%）で、眼径は頭長の 18.6～27.4%（20.9%）で、上頬の歯は 3～4 列、下頬の歯は 4～5 列である。上頬と下頬の外側前部の 1 列の歯は大きい、舌は口床部分を遊離しており、舌端に確認がずら。鳴叫骨端は、膜状部が見られるもの（Fig. 3, A）と膜状部が見られないもの（Fig. 3, B）とがある。鳴叫骨のプリザーレッドで染色される部分の長さと幅の比は 1.1～1.2（1.2：2）、鰭骨は 0+8＝8（1 個体）。

背鰭 VI-I, 8～10 (VI-I, 9.0: 12), 臀鰭 1, 7～8 (1, 7.1: 12), 尾鰭 5+9+8+5 (2), 胸鰭 17～19 (17.8: 12), 尾鰭長は標準体長の 25.6～37.2% (30.8%) で、頭長の 74.5～119.4% (97.3%) で、胸鰭の先端は前肢基底部分まで達する。胸鰭の結合部には鰭溝がない。鰭基が親し、その辺縁は平滑である。

縦棘数 26～34 (29.3: 12), 横棘数 8～11 (9.6: 12), 背鰭前面棘数 6～11 (8.3: 12), 臀鰭部と胸鰭部に棘がなく、後肢と頸部から円鰭が始まり、舌面では第1背鰭基部。腹面では肛門の前方に鰭管が見られる。

やや不鮮明な暗灰色帯が、第1背鰭下に 1 本、第 2 背鰭下に 2 本ある。胸鰭の鱗条上に細長い暗色斑が数本ある (Fig. 4).

前眼脛骨管には、開孔 B', C (単一), D (単一), E, F, G, H' がある。開孔 C と D の間は 1 本の感覚管である (Fig. 5, A)。後眼脛骨管には開孔 K' と L' がある。前顎蓋管には開孔 M', N, O' がある。孔径列 16 は 3 短横列が皮膜上にあり、その後方に皮膜のない孔径列 1 番列に並ぶ。頭部の孔径は高く、後部は低く隆起するが、いずれも皮膜よりは高くない。1 個体では、3 短長横列の他にそれより短い 1 短横列が両側に見られた。孔径列 20 がある (Fig. 2)。

下顎鱗は両側にあり、左側の下顎鱗の基長は、下顎の射出骨の幅の 112.9～150.0% (131.5%: 2) である。脊椎数 25～26 (25.9: 10)。

フタスジハゼ(新称)Callogobius sclateri (Steindachner)
(Fig. 6)
Mucogobius bifasciatus Smith, 1958: 146, fig. 15.
Pemba Island, East Africa.

体は胸鰭基底の位置でやや側扁する。頭長は標準体長の 30.3～35.7% (32.2%: 11), 両眼間隔は眼径の 35.7～54.6% (45.6%: 11), 眼径は頭長の 16.9～23.3% (19.8%: 11). 上頬の歯は 2～3 列、下頬の歯は 3～4 列である。上頬は外側の 1 列の歯が大きい。下頬の前部は外側の 1 列の歯が大きく、後部では内側の 1 列の歯が大きい。舌は口床部から遊離しており、舌端に観察が少なく、鳴叫骨端に膜状部がない (Fig. 3, C). 咀嚼骨のプリザーレッドで染色される部分の長さと幅の比は 2.2 (1), 鰭骨数 0+7＝7 (1)。

背鰭 VI-I, 9～10 (VI-I, 9.2: 11), 臀鰭 1, 7～9 (1, 7.5: 11), 尾鰭 6+9+8+5 (1), 胸鰭 15～18 (16.5: 11), 尾鰭長は標準体長の 21.3～32.6% (28.2%: 11), 頭長の 70.3～98.8% (87.6%: 11), 背鰭の先端は腎鞘起始
部まで達する。腹鱗の総合模は基底にわずかにあり、総
合模長は腹鱗最長鱗条長の 4.4～6.3% (5.8%：4)。腮
蓋がない。

続列鱗数 29～31 (30.0: 10)，横列鱗数 11～12 (11.4:
10)，背鱗前部鱗数 11～15 (12.8: 10)，吻端と眼端部
に鱗がなく、頭部と尾部から円鱗が始まり、背面では
第 1 背鱗起始部，腹面では肛門の前方から褫鱗が見られ
る。

暗色鱗帯が、第 1 背鱗下に 1 本，第 2 背鱗下に 2 本ある。
胸鱗にはその基底上部から先端にかけて 1 暗色帯が
ある (Fig. 4)。

前眼頭鱗帯には，間孔 B'，C（単一），D（単一），E，F，
G, H' がある，間孔 C と D の間は 1 本の感覚帯である
(Fig. 5，A)。後眼頭鱗帯はなく，前鳃蓋帯はなく，3 個
の単一孔がある，孔列 14 と 15 は孔列 8 と 9 の間
で中断しない，孔列 16 は 11 短横列からなる，孔列 20
はある (Fig. 2)。

下後頭鱗は両側にない，脊椎骨数 26 (8)。

オキナワハゼ Callogobius hasseltii (Bleeker)
Eleotris hasseltii Bleeker, 1851: 253, fig. 13. Java，
Indonesia.
Gobius (Oxyurichthys) coelidotus Sauvage, 1880:
Macgregorella moroana Seale, 1909: 533. Jolo，
Jolo Island, Philippines.
Macgregorella badia Herre, 1935: 415. Fiji，
Pacific Ocean.

体は胸鱗帯の位置でやや締縄する，頭部は標準体長
の 24.1～35.2% (27.0%：47)，両眼距離は眼の 30.8～
66.7% (47.5%：47)，眼径は頭長の 14.9～25.7%
(20.5%：47)，上頜と下頜の歯は 3～4 列である，上頜
と下頜の外側前部の 1 列の歯は大きい，舌は口部から
遊離しており，舌端にくぼみなく，吻骨部には膜状部
がなく，吻骨部のアリザリオン・レッドで染色される部分
の長さと幅の比は 1.7～2.3 (2.0: 7)，総合鱗 1+9 =
10 (1)。

背鱗 VI-I，10～11 (VI-I, 10, 1: 47)，臀鱗 1，7～9
(1, 8.0: 47)，尾鱗 5～7 (6, 1: 10)+8 ～9 (8.9: 10)+
8 (8.0: 10)+5～7 (6.2: 10)，胸鱗 15～19 (16, 4: 47)，
尾長は標準体長の 20.0～63.8% (29.9%：47)，頭長
の 66.7～150.0% (110.9%：47)，胸鱗の先端は胎鱗起
始部まで達しない。腹鱗の総合模は塩入しており，覆合
鱗長は腹鱗最短鱗条長の 70.0～88.9% (81.6%：4)，腮
蓋があり，その辺縁は平滑である。

縦列鱗数 42～49 (45.7: 42)，横列鱗数 16～21
(19.2: 42)，背鱗前部鱗数 8～19 (12.8: 37)，顔部と腮
蓋部に鱗がなく，後頭部は腮蓋中央の位置から円鱗が始
まる。

暗色鱗帯が，第 1 背鱗下と第 2 背鱗下にそれぞれ 1 本

— 121 —
ある。標準体長 12～14 mm の個体には尾柄部に 1 個色横帯がある。胸鱗基部上方に 1 暗色点がある（Fig. 4）。
前眼頭背甲管は、開口 R, C (単一), D (単一), E, F, G, H が、開口 C と D の間には 2 本の感覚管である（Fig. 5, B）。しかし、前眼頭背甲管は変異に富んでおり（明仁親王・目黒, 1975), Fig. 5B の型は 41 個体中 20 個体* に見られた。胞外骨のうち、Fig. SC と同様のものも 1 個体（明仁親王・目黒, 1975）が見られ、Doryptena snyderi の完結型標本もこれに似ており、感覚管開口 C はあるが、開孔 C はない。後眼頭背甲管は、前頭蓋管に、開孔 M', N, O' がある。孔器型 14 と 15 は、孔器列 8 と 9 の間で中断する。43 個体の左側を観察した結果、孔器列 14 と 15 が共に連続しているもの 1 個体、孔器列 15 のみ連続しているものが 6 個体見られた。左側に変異が見られたこれらの個体では、孔器列 15 が連続している 2 個体を除き、右側同様の変異は認められなかった。孔器列 16 は 12 短横列からなる。孔器列 20 はない（Fig. 2）。
下後鎖骨は両側に、脊椎骨数 26～27（26.1: 34）。
松原 (1955: 835) がヨウシハイゼの和名を与えた Callogobius snyderi は、完結型標本を調べたところ C. okinawae と一致したので C. okinawae のシノニムとなる。なおヨウシハイゼは、Tomiyama (1958: 1187) により Pariglossus taeniatus Regan の和名として用いられている。

タネハゼ Callogobius tanegasimae (Snyder) Doryptena tanegasimae Snyder, 1908: 104. Tanegasimah, Kagoshima Prefecture, Japan.

Galera producta Herre, 1927: 104, pl. 7, fig. 3.
Puerto Galera, Philippines.

体は胸鱗基部の位置で、やや細長い。頭長は標準体長の 19.9～26.5% (22.6%: 23)。両眼間隔は眼径の 41.2～68.0% (53.8%: 21)。眼径は頭長の 13.8～24.3% (18.1%: 21)。上頜の歯は 3～4 列。下頜の歯は 2～3 列である。上顎と下顎の外側前部の 1 列の歯は大きい。舌は口底背を遮離しており、舌端にくぼみがなく、歯舌骨に削状部がなく、歯舌骨のアライメントとレッドで染色される部分の長さと幅の比率は 1.8～2.4 (2.2: 10)。鰭閉数 1 + 7 = 8 (1)。

背鰭 VI-I, 13～15 (VI-1, 14, 1: 23), 臀鰭 1, 10～13 (1, 11.8: 23), 尾鰭 4～5 (4.7: 14) + 9 (14) + 7～9 (8.0: 14) + 4～5 (4.6: 14), 背鰭 16～18 (16.9: 23).

* 明仁親王・目黒 (1975) の結果に今回の観察標本を加えた。

尾鰭長は標準体長の 25.9～48.5% (38.2%: 22), 頭長の 109.8～231.3% (171.5%: 22), 胸鱗の先端は、雌で 14 個体中 6 個体が胸鱗基部まで達し、8 個体が達しないが、雌では 7 個体全部が達しない。腹鰭の塩膜は薄いが、膜蓋があり、その辺縁は平滑である。

総列数 60～70 (65.4: 23), 繊列数 15～19 (16.8: 23), 背鰭前部鱗は 1 本、背部では第 1 背鰭基部、腹側では胸鱗基部の後方に円鱗が見られ、それより前方に鱗はない。

暗色横帯が、第 1 背鰭下に 1 本、第 2 背鰭下に 2 本、尾柄部に 1 本ある。胸鱗には、基底上部から先端にかけて 1 暗色帯がある (Fig. 4)。

前眼頭背甲管には、開孔 R, D (単一), F, G, H があり、開孔 C と E はない (Fig. 5, C)。しかし、前眼頭背甲管は変異に富んでおり（Fig. 5C の型は 19 個体中 10 個体に見られた。変異の中には、開孔 E がない。Fig. 5A の型の 2 個体、開孔 C があり、開孔 E と、それに加えて開孔 E と D の間に 1 開孔が左側にあるもの 1 個体、また開孔 C がない、開孔 E と開孔 C にあたるもの 2 個体が見られた。後眼頭背甲管は、前頭蓋管はなく、2 個の単一孔器がある。孔器列 14 と 15 は、孔器列 8 と 9 の間で中断しない。孔器列 16 は 12 横列からなる。孔器列 20 はない (Fig. 2)。

下後鎖骨は両側にあり、その左側の下後鎖骨の長さは下端の射出骨の幅の 29.4～57.1% (41.4%: 10) である。脊椎骨数 28～30 (29.5: 20)。

オキナワハゼ属 5 種の関係線

オキナワハゼ属 5 種の関係線を考察するために、5 種の形態的共通度とハゼ科の祖先が有していたと考えられる個々の形質が各 5 種でどのように保持または消失したかを検討した。ハゼ科の祖先はハゼ科の中で最も特化の程度が低いと考えられる種に近いものと思われる。この特化の程度が低いと考えられる種は骨と感覚管の消失が最も少なく、眼下骨、頚の筋肉の筋が付着する主上顎骨突起、上顎顎骨、中翼狀骨、上顎骨、鰭条骨 6 本を有している（明仁親王, 1969, 1971; 明仁親王・目黒, 1974）。オキナワハゼ属 5 種の個々の形質を比較対照するために取り上げた種は眼下骨、主上顎骨突起とその他の骨を有する種、及び眼下骨は見られないが主上顎骨突起とその他の骨を有する 5 種である（15頁参照）。これに対し、オキナワハゼ属は Fig. 7 に示すように眼下骨、主上顎骨突起、上顎顎骨、中翼状骨、上顎骨を欠き、鰭条骨は 1 本少なく 5 本となる。このようにオキ

122
ナキハゼ属ではいくつの骨が消失するという特化が生じていることから、以下に比較対照とする形質の特化の度合も連続的に追う必要があるので、骨の消失段階の異なる種、特にオキナワハゼ属と同程度の骨の消失段階にある鰭条骨5本の種についても個々の形質に見られた変化を考慮に入れた。

Fig. 7. Comparison of bones of Oxyleotris marmorata and Callogobius showing the loss of bones (black portions) in the latter. br1~6, branchiostegals; ch, cartilage; cl, ceratohyal; cm, cleithrum; por, coracoid; eh, ephihyal; h, hypomandibular; ih, interhyal; iop, interopercle; lpcl, lower post-cleithrum; mp, mesopterygoid; mtp, metapterygoid; mx, maxilla; op, opercle; pa, palatine; pop, preopercle; pmx, premaxilla; prmx, process of maxilla; pt, pterygoid; q, quadrato; s, symplectic; sca, scapula; so, sub-orbital; sop, subopercle; upcl, upper post-cleithrum.

体形・背鰭と臀鰭の鳍条数・尾鰭長・脊椎骨数 オキナワハゼ属5種の中で、タナハゼは体と脳鰭が最も延長し、第2背鰭筋条数、臀鰭筋条数、脊椎骨数の増加が見られる。このように延長する体形は主上頸骨突出を有する種には見られない。オキナワハゼとメスハゼともな体と尾鰭の延長の傾向が見られ、オキナワハゼよりメスハゼの方がその傾向は強い。

齧 主上頸骨突出を有するほとんどの種は上頜と下顎の前部では外側の歯が大きく、下顎の後部では内側の歯が大きい。このような特徴はメスハゼの歯に見られることから、メスハゼは歯の特徴において特化の程度が高いと言える。

舌・咽舌骨 高木（1950）は湾入のない咽舌骨をハゼ
魚類学雑誌 Japan. J. Ichthyol. 24 (2), 1977

科の基本型とし、その中では鰭骨角の最も小さいハンハビ型のもの、すなわち細い鰭骨角をその始原型と考えている。主上頸骨突起を有する種はすべて舌が口頭部から遊離し、舌端にくぼみがない。また、鰭骨角には膜状部分がない。しかしハンハビ型の細い鰭骨角はいない。長さと幅の比率ではオキナワハビ属 4 種で異なり、シュンカンハビを除くオキナワハビ属 4 種は、主上頸骨突起を有する種のこのような特徴を具現化していることから、シュンカンハビでは舌と鰭骨角において特化していると言える。

胸鰭 主上頸骨突起を有する種は胸鰭が眼茎起始部に達しない。シャナハビを除くオキナワハビ属 4 種の胸鰭は眼茎起始部に接触することから特化したものと言える。しかし、シャナハビの胸鰭も主上頸骨突起を有する多くの種と比べると胸鰭起始部近くまで延びていることは、シャナハビの胸鰭も特化していると言える。

腹鰭 主上頸骨突起を有する種の腹鰭はすべて完全に分離しており、オキナワハビ属に見えられるような癒合膜でつながっている膜でない、軟骨が 5 本の種の中に主上頸骨突起を有する種が完全に分離している腹鰭は見つかず、多くの種は膿孔のない癒合膜と膜蓋を有している（明仁親王、1969）。このことから膜脛骨 5 本の種では膿孔のない癒合膜と膜蓋がある種が膿孔のある癒合膜と膜蓋がない種よりも特化の程度が低いと考えられる。更にメチハビ Amblyeleotris jaaponica における同一種間の癒合膜と膜蓋の変異や成長に伴う癒合膜の縮小の例（Yanagisawa, 1976）もこの考えを支持すると考えられる。したがってシュンカンハビとシャナハビは特化の程度が低いと考えられる。

鰭 ハゼ科の鰭は軟骨から円鰭へと特化したと考えられる（松原, 1955: 809; 小林・近藤, 1959; 小林・大橋, 1962）。主上頸骨突起を有するほとんどの種の頭部は吻で円鰭で覆われており、軟骨の軟骨から始まる。オキナワハビ属 5 種の中ではシュンカンハビとタスジハゼは鰭が全体を覆う部分とその中の軟骨の部分で最も広く、特化の程度が最も低いと考えている。この 2 種に次いでオキナワハビ、シャナハビ、タスジハビの順に円鰭部と無鰭部が後方に広がり、退化的特化を示している。

色彩 背鰭下の帯状骨と胸鰭の模様がオキナワハビ属 5 種の間で異なるが、主上頸骨突起を有する種は一定した型が認められなかったため、色彩についての特化の度合が反映されるかどうかはわからない。

感覚管 (Fig. 8) 高本 (未公刊: 63) は感覚管系の消失傾向に系統的意義があると記している。眼下骨を有する種の感覚管と開孔はハゼ科の中で最も消失が少ない、

眼下骨を有する種以外の主上頸骨突起を有する種の中には開孔の消失が見られる（明仁親王・日黒, 1974）。シュンカンハビは、オキナワハビ属 5 種の中で最も感覚管の消失が少なく、前眼脛骨管の他に後眼脛骨管と前眼脛骨管の存在が存在し、これに属するオキナワハビとシャナハビは最も消失が多く、後眼脛骨管と前眼脛骨管が存在しない、前眼脛骨管についてはシュンカンハビ、タスジハビ、オキナワハビは同型（以下シュンカンハビ型と呼ぶ）であるが、ナメハビとタネハビはシュンカンハビ型と異なっている。タネハビでは開孔の消失も見られ、5 種の中最も特化していると考えられる。シュンカンハビ型には個体変異が見られないのに、シャナハビとタネハビの種には個体変異が見られる。

ソリ塊 オキナワハビ属のソリ塊はハゼ科に開孔することによって、主上頸骨突起を有する種と、その他のハゼ科の多くの種とも異なる。しかしソリ塊の配置では、オキナワハビ属 5 種は側面に横列ソリ塊があり、主上頸骨突起を有する種複数に似ている。オキナワハビ属 5 種の間にはソリ塊 14 と 15、ソリ塊 16、ソリ塊 20 に相違が認められる。主上頸骨突起を有する種でもこれらの 4 種に見られないソリ塊 14 と 16、ソリ塊 20 の相違が認められる。ただし主上頸骨突起を有する種のソリ塊を 14 は類詰の下でなく、それより高い位置にある。以下これらのソリ塊について特化の程度を検討する。

ソリ塊 14 と 15 はナメハビ 1 種のみ不連続で他の 4 種では連続している。主上頸骨突起を有する種のソリ塊 15 はすべて不連続であるが、ソリ塊 14 は連続しているものも、不連続のものも見られる。眼下骨を有する種には不連続のものは見られなかった。このことが不連続したソリ塊 14 と不連続のソリ塊 15 が特化の程度が低いことを示しているとも言える。しかしナメハビでは不連続のソリ塊 14 にはほとんど変異が見られないことに対し、不連続のソリ塊 15 にはソリ塊 14 より変異が多く見られる。ナメハビのいずれの形態においても特化の程度が低いもののが見られないことを考慮すると、ナメハビの不連続のソリ塊 14 と 15 はその 4 種の連続したソリ塊 14 と 15 より特化が低いとは言えない。

— 124 —
以上の結果から特化の程度が低い形質を取り出すと、
体形が延長していないこと、脊椎骨数が26であること、
下顎前部の外側と後部の内側に大きい歯のないこと、舌
が口内部から遊離し、舌端にくぼみがなく、嘴管骨端に
膜状がないこと、腹鰭に入らない後側枝鰭を扁平である。
頭部に円鱗、鰭先端に鱗板が存在すること、
後眼帯管と前額蓋板が存在すること、孔列式20が存在
すること。下顎骨が存在することである。

オキナワハゼ属5種の中でもこのような形質を最も多く
持っているのはシュサンカンハゼであり、最も少なく持っ
ているのはタネハゼである。ただしシュサンカンハゼが嘴
ではフタツジハゼより、舌と咽頭骨では他の3種より特
化した状態にある。またタネハゼも舌、咽頭骨では最も
特化の程度が低いシュサンカンハゼより、また腹鰭と下顎
骨ではシュサンカンハゼを除く他の3種より特化の程度
が高い状態にある。

シュサンカンハゼ、フタツジハゼ、オキナワハゼの3種
あるいはその内の2種のみに共通する形質には特化の高
い状態にある形質はない。

これに対しオキナワハゼ、ナマラハゼ、タネハゼの3
種あるいはその内の2種のみに共通する形質には、いず
れも特化の程度が低いことを示すものではない。オ
キナワハゼの特化の程度を見られた体及び尾鰭の延長と鱗の
退化はナマラハゼ、タネハゼの間で進んでいる。ミズ
ハゼ属Luciogobius*に関する報告（Dōtu, 1957；塀畑・
道津, 1971, 1972) からも鱗の退化、体の延長という一致
の特質がミズハゼ属内で認められ、その特化は潜在性
と関連して考えられる。なお、体の延長していないド
ウクミズハゼ属Luciogobius albus Regan は潜在性
の生態を持つとは考えられない（村井, 1972）。オキナ
ワハゼ属の場合には、体の延長と鱗の退化が見られるが、
ミズハゼ属のような鮮やかな鱗の退化は見られない。筆者の1
人。日黒がナマラハゼとタネハゼを採集した時、標準体
長12mm と 14mm の大きさのナマラハゼは砂礫上に
見られたが、それより大きいナマラハゼとタネハゼは石
や珊瑚片の下に生態していた。以上のことから体が延長
すると共にやや縦扁しているナマラハゼとタネハゼは、
ミズハゼ属ではないが、潜在性の生態を有することが
考えられる。オキナワハゼ属の他の3種の生態はわ
からないが、シュサンカンハゼとフタツジハゼは体が延長
せずやや側扁しているので前2種より潜在性の少ない生

*ミズハゼ属に属する種の範囲はTomiyama
(1936) による。Dōtu (1957) は3属に分ける。
生態を有していると考えられる。

他方、オキナワハゼ、ネマラハゼ、タメハゼには生態と無関係と思われる類似の形質が見られる。すなわち前眼脛骨管は、ネマラハゼの側面変異も考慮に入ると、互いに類似しており、孔器類もオキナワハゼとタメハゼでは等しく、ネマラハゼの側面変異の中にはオキナワハゼとタメハゼの型と区別し難いものが見られる。これらの類似性は、収捗作用として生態に関連すると言えず、むしろ系統的類縁の近さを示していると考えられる。

以上の事から、オキナワハゼ属の5種の間ではその祖先からまずシュンカンハゼ、フラズジハゼ、オキナワハゼの3系統が分れ、その後ネマラハゼに至る途中でネマラハゼとタメハゼが分れたと推察される（Fig. 9）。

謝辞

本文を書くにあたり、有益な助言と文献の閲覧の便宜を与えて頂いた東海区水産研究所阿部宗明博士、有益な助言を与えて頂いた国立科学博物館新築模型博士、東京医科歯科大学 Richard C. Goris 博士、東京大学総合研究所河合義博士、日本リーバル神学大学上野輝明博士並びに東京大学水産学士生、同富士照博士、また、この研究で貴重な資料を貸与された前橋兵司先生、Rijksmuseum van Natuurlijke Historie の Marinos Boeseman 博士、Naturhistorisches Museum の Kähsbauer Paul 博士、J. L. B. Smith Institute of Ichthyology、Rhodes University の J. L. B. Smith 博士、東京水産大学高木和徳博士、United States National Museum の Stanley H. Weitzman 博士及び Ernest A. Lachner 博士、Field Museum of Natural History の Loren P. Woods 博士並びに種々の機関を賜与された方に対し深く感謝の意を表する。この研究において計測及び作図は坂本秀一総理府技官、計測の一部は岡本正幸総理府技官の協力を得た。ここに深く感謝する。

引用文献

明仁親王、1969、ハゼ科魚類の中翼状骨、後頭骨、鰭条骨、腹鰭、側頚骨、眼下骨に基づく分類の検討、魚類学雑誌、16 (3): 93–114, figs. 1–8.

明仁親王、1971、ハゼ科魚類の上顎骨について、魚類学雑誌、18 (2): 57–64, figs. 1–2.

明仁親王・目黒勝介、1974、オシマダラハゼ（新名）Opisthoca mokocephala とタメトモハゼ Opisthoca aberes について、魚類学雑誌、21 (2): 72–84, figs. 1–4.

明仁親王・目黒勝介、1975、ネマラハゼについて、魚類学雑誌、22 (2): 112–116, figs. 1–3.

蒲原倫治、1964、沖縄及び八重山群島の魚類、高知大
　小林文雄・近藤 泉、1954、アゴハゼに見出された原鱗
　の退化によって生じた円鱗について、日本水産学会誌,
　小林文雄・大橋亮子、1962、アゴハゼ Chasmichthys
dolichognathus (Hilgendorf) と比較したドロメ Ch. gulosus (Guichenot) の第 2 次巖屑について。愛知学芸大学研究報告，自然科学，(11): 71～77，figs. 1～6。
松原喜代松。1955. 魚類の形態と検索，II. 石崎書店，東京，pp. i～v + 791～1605，figs. 290～536.
高木和徳。1950. ハゼ科魚類の舌骨下に見られる系統について。魚類学雑誌，1 (1): 37～51，figs. 1～3.
Takagi, K. 1957. Descriptions of some new gobioid fishes of Japan, with a proposition on the sensory line system as a taxonomic character. J. Tokyo Univ. Fish., 43 (1): 97～126，figs. 1～8，pls. 5～6.
高木和徳。（未公刊）日本水域におけるハゼ亜目魚類の比較形態，系統，分類，分布および生態に関する研究。iii + 273 pp., 47 figs. (藤森印製)

(107 東京都港区元赤坂 東宮御所)