Genetic Differences of *Pungitius pungitius* and *P. sinensis* in a Small Pond of the Omono River System, Japan

Keisuke Takata, Akira Goto and Fumio Yamazaki

(Received September 26, 1986)

Pungitius pungitius and *P. sinensis* are distributed in the northern part of Honshu and Hokkaido Islands, Japan. No genetic differences were detected between the two species in cohabiting rivers in Hokkaido (Niwa, 1987), and only one morphological difference, number of lateral plates, was observed (Takata et al., 1984). These suggest that the two species in Hokkaido should be distinguished from each other at a lower taxonomic level of species (Takata et al., 1984). However, morphological differences between coexisting *P. pungitius* and *P. sinensis* were revealed in the Omono River of Tohoku District (Tanaka, 1982). Biochemical discriminations were performed on *P. pungitius* and *P. sinensis*, cohabiting in a pond in Hiraga of the Omono River system, by using isozymes and protein alleles detected through starch gel electrophoresis in order to clarify whether or not they are reproductively isolated and to reasseess their taxonomic status.

Materials and methods

Specimens of *P. pungitius* and *P. sinensis*, which were distinguishable by their lateral plate morphology according to Ikeda (1933), were collected in April 1983 at a pond of the Omono River system in Hiraga, Akita Prefecture on Honshu, the main island of Japan. This nameless pond is small and narrow (about 100 × 20 m) and shallow (80 cm in depth). A narrow inlet from a spring flows into the upper end of this pond and two outlets flow out at another end and connect to a tributary of the Omono River. Filamentous algae cover the muddy bottom and thin patches of vegetation are distributed along the shore.

All specimens were captured with a dip net and immediately carried to the laboratory with dry ice in an insulated container, and stored at −40°C until use for electrophoretic analysis. Thirteen loci, controlling phosphoglucomutase (PGM), phosphoglucone isomerase (PGI), 6 phosphogluconate dehydrogenase (PGD), α-glycerophosphate dehydrogenase (GPD), malate dehydrogenase (MDH), superoxide dismutase (SOD), and muscle protein (MP) were analyzed by starch gel electrophoresis. The procedures for electrophoresis, staining, assumption of loci and alleles were performed as described by Takata et al., (1987).

Results

Pungitius pungitius and *P. sinensis* were mainly collected in the areas with thin vegetation along the shore of the pond but the distribution of the two species varied. Many *P. pungitius* were caught in the lower one third of this pond. All of the 17 specimens collected in outlets of the pond belonged to *P. pungitius*. The majority of the specimens caught in the upper two thirds of this pond belonged to *P. sinensis*.

Adult females of both species had ripe eggs and adult males of each species were black, their nuptial color. Some males were observed guarding deposited eggs in their nests.

Allele frequencies for 13 loci examined in samples of the two species are compared (Table I). The phenotypic patterns for 5 out of 13 loci were polymorphic in *P. pungitius*: *Gpd*, *Pgd*, *Pgi-II*, *Pgm-II* and *Mp-III*. Two of 13 loci were polymorphic in *P. sinensis*: *Pgi-II* and *Pgm-II*. Comparison of observed frequencies of genotype on *Pgd* in *P. pungitius* and on *Pgi-II* in *P. sinensis* with Hardy-Weinberg expectations showed no statistically significant deviations.

As for the loci *Pgm-I*, displacement of alleles was observed between *P. pungitius* and *P. sinensis*. *P. pungitius* had *Pgm-I*-a, whereas *P. sinensis* possessed *Pgm-I*-b. Significant differences in allelic frequencies on *Gpd*, *Pgd*, *Pgi-II* and *Mp-III* were also detected between the two species (*P* < 0.001). Estimate of genetic distance between the two populations (Nei, 1972) was 0.4278.

Concerning the 4 loci on which significance were observed, only two individuals which belonged morphologically to *P. pungitius* were responsible for rare alleles of this species which are common to *P. sinensis*. One of them showed heterozygous patterns on *Gpd* (bc), *Pgd* (ac), *Pgi-II* (cd), but showed homozygous pattern on *Mp-III* (bb) as *P. sinensis*; the other exhibited
heterozygous on Pgd (ac), Pgi-II (cd), but the same homozygous on Gpd (cc) and Mp-III (bb) as P. sinensis.

Discussion

The fact that only two individuals were responsible for all rare genotypes on 4 loci (Gpd, Pgd, Pgi-II and Mp-III) in P. pungtius strongly suggests that these are not rare variants of P. pungtius on each of the loci, but hybrids between P. pungtius and P. sinensis. Therefore, not only Pgm-I but also Gpd, Pgd, Pgi-II and Mp-III are regarded as displaced loci between the two populations.

Moreover, the combinations of displaced alleles on the 4 loci of the two individuals may indicate that these are not F₁ hybrids but belong to the later filial generations, because they did not show heterozygous patterns on all displaced loci.

A marked deficiency of lack of heterozygotes between sympatric populations can be taken as evidence of reproductive isolation (Dowling and Moore, 1984; Takata et al., 1987). Therefore, these displacements of alleles between the sympatric populations of P. pungtius and P. sinensis distinctly show that they lack the ability to exchange genes with each other and thus they are in almost perfect reproductive isolation.

Appearance of a few hybrids suggests that the premating isolation is not sufficient to prevent exchange of genes between populations of P. pungtius and P. sinensis in this small pond. No F₁ hybrids were observed, but later filial generations occurred suggesting that fertile F₁ hybrids exist. The ratio of hybrids to all specimens examined was, however, less than 3%. This suggests that not only premating isolation but also hybrid breakdown of postmaturing isolation (Dobzhansky et al., 1977) may play a role in the reproductive isolating mechanisms, since if all hybrids were viable and fertile, more hybrids would be expected to occur.

Significant differences in the average number of dorsal spines, gill-rakers, dorsal rays, pelvic rays and caudal rays were found between P. pungtius and P. sinensis cohabiting in the stream of Hiraga located near this pond in the same river system (Tanaka, 1982). Moreover, a biased distribution pattern of both species, which was observed in some tributaries of the Omono River system (Ikeda, 1950), was also detected in this pond. Genetic distance between P. pungtius and P. sinensis (D=0.4278) in this pond is almost similar to values between congenic species in other fishes (Taniguchi et al., 1986). According to the biological species concept (Mayr, 1963), such observations as allelic displacements, genetic distance and conspicuous morphological and ecological differences suggest that P. pungtius and P. sinensis in the Omono River should be regarded as independent species.

In Hokkaido, however, neither genetic differences (Niwa, 1987) nor morphological differences, except for the number of lateral plates (Takata et al., 1984), were confirmed between the fresh water type of P. pungtius (Takata et al., 1987) and P. sinensis in the cohabiting rivers. This suggests that both of the species in Hokkaido cannot be regarded as independent species. Based

<table>
<thead>
<tr>
<th>Locus</th>
<th>P. pungtius type (N=40)</th>
<th>P. sinensis type (N=40)</th>
<th>Locus</th>
<th>P. pungtius type (N=40)</th>
<th>P. sinensis type (N=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdh-I a</td>
<td>1.000</td>
<td>1.000</td>
<td>Pgm-I a</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mdh-II a</td>
<td>1.000</td>
<td>1.000</td>
<td>b</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Mdh-III a</td>
<td>1.000</td>
<td>1.000</td>
<td>Pgm-II c</td>
<td>0.987</td>
<td>0.987</td>
</tr>
<tr>
<td>Gpd b</td>
<td>0.962</td>
<td>0.000</td>
<td>e</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>c</td>
<td>0.038</td>
<td>1.000</td>
<td>Sod c</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Pgd a</td>
<td>0.025</td>
<td>1.000</td>
<td>Mp-I b</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>c</td>
<td>0.737</td>
<td>0.000</td>
<td>Mp-II b</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>d</td>
<td>0.238</td>
<td>0.000</td>
<td>Mp-III a</td>
<td>0.950</td>
<td>0.000</td>
</tr>
<tr>
<td>Pgi-I b</td>
<td>1.000</td>
<td>1.000</td>
<td>b</td>
<td>0.050</td>
<td>1.000</td>
</tr>
<tr>
<td>Pgi-II b</td>
<td>0.000</td>
<td>0.385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0.025</td>
<td>0.615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.975</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
on morphological studies, Takata et al. (1984) suggested two possibilities concerning the systematic relationships between *P. pungitius* and *P. sinensis* in the Omono River and those in Hokkaido. The first possibility is that such differences might be caused by a geo-clinal change in the degree of gene exchange between the two species from Hokkaido to the Tohoku District. The second possibility is that *P. pungitius* and/or *P. sinensis* in the Omono River belong to different species from those of Hokkaido, owing to a discontinuous change in the degree of gene exchange between the two species from Hokkaido to the Tohoku District. Takata (1986) showed that the populations of *P. pungitius* in the Omono River were genetically differentiated from that of Hokkaido or the Tohoku District. Therefore, the differences in genetic relationships between the Omono River and Hokkaido confirmed in the present study may be explained by the second possibility.

Acknowledgments

We are grateful to Dr. Yuji Sawara of Hiroasaki University and Messrs. Nobuo Kakizaki and Hideki Sugiyama of Akita Prefecture for their information and help in collecting materials. The field work in the present study was partly supported by a grant-in-aid (No. 58121004) from the Ministry of Education, Science and Culture, Japan.

Literature cited

(Laboratory of Embryology and Genetics, Faculty of Fisheries, Hokkaido University, Hakodate 041, Japan: KT, present address: Department of Biology, Faculty of Science, Shinshu University, Matsumoto 390, Japan)

雄物川水系におけるイバラトミョ (Pungitius pungitius) とトミョ (P. sinensis) の遺伝的差異

高田啓介・後藤 映・山崎文雄

雄物川水系平川の小さな池に同種に生息しているイバラトミョとトミョの生殖的隔離の有無をアインザイムを用いて調査した。鱗状形態から区分されたイバラトミョとトミョの集団間には、13遺伝子座中の1遺伝子座で対立遺伝子の置換が認められた。また、イバラトミョに区分された集団（40個体）の中には、そのアインソイムパターンからトミョとの雑種と推定される2個体が検出された。この2個体はイバラトミョから除くと、両集団間には2遺伝子座で対立遺伝子の置換が存在することになる。従って、この池のイバラトミョとトミョには、かなり厳密な生殖的隔離が存在すると考えられた。また、雑種個体の出現頻度が低く、それらがF_1雑種ではなくそれ以降の世代の雑種個体であったことから、両集団間には、交配前の隔離機構だけでなく、交配後の隔離機構として雑種崩壊も機能していな可能性が示唆された。

(041 函館市港町 3–1–1 北海道大学水産学部発生学・遺伝学講座；高田，現住所：390 松本市旭 3–1–1 信州大学理学部生物学教室)